[quote name='sayare' date='10 June 2013 - 09:03 PM' timestamp='1370877907' post='116674']
two interesting pics
and this
K15 underwater launch and platform pic.
[/quote]
https://www.youtube.com/watch?v=KQUgFz4QWKc
A couple of observations based on these images and the video from which these images are extracted.
The blue drum of the underwater launch rig is possibly 1.5 to 1.75 meters high. The hatch cover of the launch rig is almost twice the size of the blue drum. Therefore the outer diameter of the hatch door looks like it's approximately 3 to 3.5 meters. The inner k5 silo seems to be slightly smaller. Seems to confirm Arun's numbers of 2 to 2.2 meters with maybe a little clearance.
If you notice the outer hatch cover has five sensors horizontally and an additional five sensors vertically. These are placed on the diameter of the hatch cover. 3 to 3.5 meter hatch cover has six such divisions including the outer end where there are no sensors(two of these). So the spacing between the sensors is half a meter to 0.6 meters. The diameter of the missile launched form the the launch rig captured in the image is 1.5 to 1.8 meters. Which indicates it could be a test launch consistant with the reports of a k05(?). Also the sensors seems to be positioned to verify the exact position at launch of the missile along the x-y axis on launch to identify any deviation of the misslie on canister launch (?) You will notice the down bubble on the whole rig and the missile more to the left when it leaves the launch tube. The sensors on the right are left exposed (This assumes the camera is set to always show the plumb line position using gyros which are common on RC aircraft for stabilization and fairly easy to get hold of for mounting ...). Additionally, you can also make out the diameter of the missile launch cap under water is 1 to 1.2 meters. This cap is then jettisoned on launch in the video after it climbs a few meters above the sea surface(?). So this missile test was for a ek phool wala misslie(?).
The questions I am mulling over is: Does a down bubble launch require more silo clearance than a vertical launch (?) to prevent the missile trying to correct itself on launch to align with the waters natural buoyancy forces? Maybe this force has to be overcome in a submarine launch and hence the high thrust launch from the canister at approximately 30m/s(?). Maybe this is why the initial tests were of a smaller diameter missile with progressive launches being performed with lower clearance. Get comfortable with launches of 1.5 to 1.8 meter missiles before pushing the envelope on the silo clearance(?).
Additionally from the video the 10.2 meter missile launch seems to traverse the 3 to 3.5 meter launch hatch completely in a second or so. The last frame is cut off so I am not very sure this is true. The launch velocity is 25 m/s to 30m/s(? my arithmetic skills aren't great ) Of course the missile after clearing the surface is ignited and has a different launch velocity when the rockets power up.
Additionally at 3.53 in the video the mockup shows 4 missiles in each silo (?) So that's sixteen per submarine? Interesting. 4 silos or launch tubes.
Disclaimer: Take all of my calculations with a pinch of salt. I have a tendency to mess up on arithmetic by making some really unforced errors in silly places.
two interesting pics
and this
K15 underwater launch and platform pic.
[/quote]
https://www.youtube.com/watch?v=KQUgFz4QWKc
A couple of observations based on these images and the video from which these images are extracted.
The blue drum of the underwater launch rig is possibly 1.5 to 1.75 meters high. The hatch cover of the launch rig is almost twice the size of the blue drum. Therefore the outer diameter of the hatch door looks like it's approximately 3 to 3.5 meters. The inner k5 silo seems to be slightly smaller. Seems to confirm Arun's numbers of 2 to 2.2 meters with maybe a little clearance.
If you notice the outer hatch cover has five sensors horizontally and an additional five sensors vertically. These are placed on the diameter of the hatch cover. 3 to 3.5 meter hatch cover has six such divisions including the outer end where there are no sensors(two of these). So the spacing between the sensors is half a meter to 0.6 meters. The diameter of the missile launched form the the launch rig captured in the image is 1.5 to 1.8 meters. Which indicates it could be a test launch consistant with the reports of a k05(?). Also the sensors seems to be positioned to verify the exact position at launch of the missile along the x-y axis on launch to identify any deviation of the misslie on canister launch (?) You will notice the down bubble on the whole rig and the missile more to the left when it leaves the launch tube. The sensors on the right are left exposed (This assumes the camera is set to always show the plumb line position using gyros which are common on RC aircraft for stabilization and fairly easy to get hold of for mounting ...). Additionally, you can also make out the diameter of the missile launch cap under water is 1 to 1.2 meters. This cap is then jettisoned on launch in the video after it climbs a few meters above the sea surface(?). So this missile test was for a ek phool wala misslie(?).
The questions I am mulling over is: Does a down bubble launch require more silo clearance than a vertical launch (?) to prevent the missile trying to correct itself on launch to align with the waters natural buoyancy forces? Maybe this force has to be overcome in a submarine launch and hence the high thrust launch from the canister at approximately 30m/s(?). Maybe this is why the initial tests were of a smaller diameter missile with progressive launches being performed with lower clearance. Get comfortable with launches of 1.5 to 1.8 meter missiles before pushing the envelope on the silo clearance(?).
Additionally from the video the 10.2 meter missile launch seems to traverse the 3 to 3.5 meter launch hatch completely in a second or so. The last frame is cut off so I am not very sure this is true. The launch velocity is 25 m/s to 30m/s(? my arithmetic skills aren't great ) Of course the missile after clearing the surface is ignited and has a different launch velocity when the rockets power up.
Additionally at 3.53 in the video the mockup shows 4 missiles in each silo (?) So that's sixteen per submarine? Interesting. 4 silos or launch tubes.
Disclaimer: Take all of my calculations with a pinch of salt. I have a tendency to mess up on arithmetic by making some really unforced errors in silly places.